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Many results in the geometry of numbers assert, in effect, that inequalities of a certain type are
soluble in integers, the constant on the right of the inequality being the best possible. Recent
work of Mahler often enables one to prove that such an inequality has infinitely many solutions. In
this paper we develop the theory of inequalities with infinitely many solutions, and investigate
more deeply some of the questions which naturally arise.

1. INTRODUCTION

Let F(x,, ...,%,) be a continuous real function of z real variables satisfying
Fltxy, ... tx,) = t"F(x,, ..., x,) (1)

for all real #, where 4 is a positive integer. Let 1y, ...,x, be any real linear forms in uy, ..., u,
of determinant 1. There are many theorems in the geometry of numbers which assert, when
they are expressed in arithmetical form, that for a particular function F(x,,...,x,) and
a particular number A the inequality

| Fxy,...r %) | <A | @)

is always soluble, that is, has always at least one solution in integral values of the variables
Uy, ..., u, other than 0,...,0. Sometimes the proof is such that, by a simple variation of
certain parameters, one can deduce the existence of an infinity of solutions. Suppose, for
instance, that the inequality in question is

[%...x,| <A (3)
It was proved by Minkowski, as one of the simple applications of his fundamental theorem
in the geometry of numbers, that the inequality
EA R EA ESVCD)

is always soluble. It follows from the inequality of the arithmetic and geometric means that
(3) is soluble if A = n!/n". By applying the same arguments to A, | x; |+...+A, | x, |, where
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312 H. DAVENPORT AND C. A. ROGERS ON DIOPHANTINE

Ay, ..., A, are positive parameters whose product is 1, one can deduce that (3) then has in
fact infinitely many solutions. Further, by suitable choice of A, ..., 4,, it follows that there
are then infinitely many solutions of (3) for which any n—1 of | x, |, ..., | x, | are arbitrarily
small (possibly zero).

But in most of the cases where one has reason to suppose that there are always an infinity
of solutions of an inequality such as (2), it is not easy to establish this by an extension of the
method used to prove the existence of a single solution. Especially is this true of the more
delicate types of argument which have been evolved to prove the solubility of certain
inequalities with the best possible values for the constants.

Much light has been thrown on the question by the recent work of Mahler (19464, b) on
lattice points in n-dimensional star bodies. The following result, implicit in his work (see
Mabhler 19464, theorem 23), is one of the most interesting from our present point of view.

Suppose the inequality | F(x, .yx,) | <2 (4)

is soluble in 4, ..., 4, for every set xy, ..., x, of linear forms in u,, ..., u, with real coeflicients
and determinant 1 Then it may be proved by Mahler’s methods (see § 2 below) that, under
certain general conditions on F, the inequality

| Fxy, ...px,) | <A (5)

has infinitely many solutions, for every A’ >A. The conditions in question are that F possesses

automorphisms, i.e. linear transformations with real coefficients which leave | F'| invariant,

such that (i) every point (3, ..., x,) for which | #'| <1 can be transformed, by an appropriate

automorphism, into a point in a bounded region, and (ii) every point except the origin O

can be transformed, by appropriate automorphisms, into points arbitrarily far from O.
Among the functions which satisfy these conditions aref

Fi(xy,..,x,) =% ..%, (h = n), (6)
Fy(xyy oo ®y) = 2y %, (22 H420,) o (o +47)  (h=n), (7)
Fy(xy,...ox,) =23 x2(x2 ... 22" (h = 2n), (8)
Fy(x)y...ox,) =23+ x2—a2 | —...—22 (h=2). (9

Here 1<r<n—1, except in (7), where n>>3, 0<r<n—2, and n—r is even.

Our object is to carry further the work of Mahler in this direction, and to prove some
additional results concerning the number and the distribution of the solutions of various
Diophantine inequalities. In a later paper, we hope to consider similar questions for some
particular non-homogeneous inequalities.

2. STAR BODIES
We first summarize briefly those of Mahler’s definitions and results which are relevant to
our purpose. The inequality | F(xy ..x,) | <1 (10)

defines a star body K in n-dimensional space. A lattice is said to be admissible for K if none
of its points, except O, is strictly inside K. We shall consider only bodies for which admissible

+ In this connexion, see Mahler (19464, §15).
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INEQUALITIES WITH AN INFINITY OF SOLUTIONS 313

lattices exist, i.e. bodies of the finite type. The lower bound of the determinants of all lattices
that are admissible for K is denoted by A(K). The arithmetical interpretation of A(K) is as
follows: the lower bound M(F) of the numbers A for which (4) is soluble for every set of linear forms of

determinant 1 is M(F) = {A(K)} -, (11)

For to assert the insolubility of (4), with strict inequality, for some set of linear forms, is the
same as to assert the existence of an admissible lattice for K of determinant A-**; and in
defining the lower bound of the numbers A it is immaterial whether or not we admit equality
in (4). ‘

Mabhler (19464, theorem 8) established the existence, for every star body of the
finite type, of one or more critical lattices, that is, admissible lattices of determinant A(K).
Expressed arithmetically, this means that there exists at least one set of linear forms of determinant 1
Jor which (4) is not soluble with strict inequality when A = M(F).

An automorphic star body is one for which F has automorphisms satisfying the condition (i)
of § 1, so that every point of K can be transformed, by an appropriate automorphism, into
a point of a bounded region. Mahler (19464, theorem 21) proved that every automorphic
star body possesses a critical lattice which has at least one point on the boundary of K.
Expressed arithmetically this means that there are linear forms of determinant 1 such that (4) is
soluble with equality, but not with strict inequality, when A = M(F).

The function F, or the body X, is said to be fully automorphic when its automorphisms satisfy
both the conditions (i) and (ii) of § 1. Mahler (1946 4, theorem 23) proved that every critical
lattice of a fully automorphic star body has, for any ¢>> 0, an infinity of points satisfying

L<|F(%yy ..0nx,) | <1e. (12)
We shall show (see lemma 1 and theorem 1 below), by a slight modification of his proof,
that every lattice whose determinant does not exceed A(K) has, for any ¢>>0, an infinity of
points satisfying | F(xy,...,%,) | <1+c. (13)”

If we define A, (K) to be the lower bound of the determinants of all lattices which have only
a finite number of points inside X, it follows that

A (K) = A(K) (14)

for any fully automorphic star body. Similarly, we define M.,(F) to be the lower bound of
the numbers A such that | F(xy, .. x,) | <A

has infinitely many solutions for all linear forms xy, ..., x, of determinant 1. Then
M (F) = M(F)

if F is fully automorphic. This is the result stated in § 1. ,

In order to obtain more precise results it is necessary to use the notion of reducibility,
introduced in Mabhler (194654). A star body K is said to be boundedly reducible if there exists
a bounded star body H contained in K such that A(H) = A(K). Mabhler provest that the
bodies defined by #; when n = 2 or 3, by F, when r =1 and n = 3 and by F, when n = 2
or 3 or 4, are all boundedly reducible. The proof depends in each case on previous knowledge

T Mahler (19465, §§ 13, 14, 15, 16) ; we shall see, however, that the proof in § 15 needs some modification.
41-2
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314 H. DAVENPORT AND C. A. ROGERS ON DIOPHANTINE

of the value of A(K), and on some previous knowledge concerning the critical lattices of K.
Another example of a boundedly reducible star body is provided by |

— 1< %, <k, » (15)
where  is any positive integer. Segre (1945) found the critical determinant of this body, and
it follows from his proof, or more easily from the work of Cassels (1947), that this body is
boundedly reducible.

A slightly different definition, in place of that of bounded reducibility, seems to be more
appropriate to our problem, and allows us to obtain more precise results. We shall say that
K is fully reducible if there exists a bounded star body H contained in K such that
(i) A(H) = A(K), and (ii) H has exactly the same critical lattices as K. If K is fully reducible,
it is certainly boundedly reducible. We shall see in the next section that the boundedly
reducible bodies specified in the last paragraph are all fully reducible. It is easily seen that
the definition may be expressed in the alternative form: K is fully reducible if it contains
a bounded star body H such that every lattice, whose determinant does not exceed A(K),
which is admissible for H is also admissible for K.

Before we state our first general theorem it is convenient to prove three lemmas.

LemMa 1. Let K be a fully automorphic star body. Let k be a positive integer, and A a positive
number less than 1. Then there exists a bounded star body H,. ) contained in K such that any lattice A
with d(A) <AA(K) has at least 2k -1 points in Hy, .

Proof. Let KO denote, for any ¢>0, the bounded star body consisting of those points of
K whose distance from O does not exceed .

By a theorem of Mahler (19464, theorem 10), we have

lim A(K®) = A(K).
t—>c0

Hence we can choose ¢ so that A(K®) >AA(K).

The lattice A will then have a point P other than O in K® and so will have at least three points
in KO, namely, O, P and the image of P in O. Taking H, , to be K, we see that the con-
clusion holds when £ = 1.

We now proceed by induction on £, keeping A fixed. Suppose the desired body H, ,
exists for some £, and denote it simply by H. Suppose there is no such body for £--1. Then,
for every bounded star body contained in K there will be a lattice, whose determinant does
not exceed AA(K), which has at most 2k+1 points in that body. In particular, taking the
body to be K®, where r = 1,2, ..., there will be a lattice A® with d(A®) <AA(K) such that
A® has at most 2k+ 1 points in K®. By the hypothesis of the induction, however, A® has
at least 2k-+1 points in H. Consequently, if r is sufficiently large, A® has exactly 2k+1
points in K®, and they all lie in H. Denote these points by P, ..., Pf, ;.

Since the lattices A® have bounded determinants, and each has only a bounded number
of points in H, it follows (by Mahler 19464, theorem 2 and its proof) that this sequence of
lattices contains a convergent subsequence A, A2, ... such that also each sequence of
points P{V, P{?, ..., etc., is convergent. Denote the limiting lattice by A, and the limiting
points by P, ..., Py, where Py is not O. The lattice A has exactly 2k+1 points in K¢,
and these are arbitrarily near to P, ..., Py, ;.

1 This body corresponds to F(x;, ¥,) = max (—x; %,, ¥, X,/k).
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INEQUALITIES WITH AN INFINITY OF SOLUTIONS 315

We now use the fact that K has automorphisms which transform any point other than O
into points arbitrarily far from 0. Let Q be a particular automorphism of K such that the
point QP is outside H. Then, provided 7, is sufficiently large, the lattice QQA®? has a point
QP{? outside H, and also, by the hypothesis of the induction, has at least 2k+1 points in H.
But now the lattice A?? has at least 2k+1 points in the bounded body Q~!H, and has two
additional points + P in K¢, If 7, is sufficiently large, K¢? contains Q~1H, and so A"
has at least 2k+ 3 points in K9, contrary to supposition. This contradiction establishes the
induction from £ to £+ 1, and so completes the proof of lemma 1.

LemMA 2. Suppose that K is a fully automorphic and boundedly reducible star body, and let k be
a positive integer. Then there is a bounded star body H, contained in K such that, if A\ is a lattice with
determinant A<A(K), then there are at least 2k+-1 points of A in H,.

Proof. The result is true when £ = 1 by the definition of a boundedly reducible star body.
The general result follows by induction just as in the proof of lemma 1; in fact, the proof may
be used word for word if A is replaced by 1.

Lemma 3. Suppose that K is a fully automorphic and fully reducible star body, and let k be a positive
integer. Then there is a bounded star body H¥ contained in K such that, if A is any lattice with deter-
minant A<A(K), then there are at least 2k+1 points of A in H¥ ; at least 2k -1 being strictly inside
H¥ unless A is a critical laitice of K.

Proof. We first prove that there exists a bounded star body H, contained in K such that,
if A is any lattice, which is not a critical lattice of K, with determinant A<A(K), then there
are at least 2k+-1 points of A strictly inside Hy. This is true when % = 1 by the definition of
a fully reducible star body. The result follows by induction just as in the proof of lemma 1.
It is necessary to make a number of minor changes in the proof; 1 is taken to be 1 throughout,
the lattices A® (but not necessarily A) are chosen to be lattices, which are not critical lattices
of K, with determinants less than or equal to A(K), and we are concerned only with points
of these lattices A which are strictly inside the various bodies.

Next, since K is boundedly reducible, it follows by lemma 2 that there is a bounded star
body H, contained in K such that, if A is any lattice with determinant A<A(K), then there
are at least 2k 1 points of A in H,.

Now it is clear that the conclusion of the lemma is valid for any bounded star body H*
contained in K and containing the bounded star bodies H, and Hj. This completes the proof
of the lemma.

We now state and prove
THEOREM 1. Suppose the body K defined by

| Fxy, 0005 %,) [ <1 (16)

is fully automorphic, and suppose that A is a lattice with determinant A. Then
(@) of A<A(K), there are an infinity of solutions of (16) with strict inequality;
(6) o K is boundedly reducible and A<A(K), there are an infinity of solutions of (16); and
(¢) o K is fully reducible and A<A(K), there are an infinity of solutions of (16) with strict in-

equality, unless A\ is a critical lattzce of K, in which case there are an infinity of solutions of (16) with
equality.
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Proof. The conclusion (a) is merely a restatement of the result we considered at the
beginning of this section and which, as we said, can be deduced from a modified form of one
of Mahler’s proofs. This conclusion is also an immediate consequence of lemma 1.

The conclusions (5) and (¢) follow immediately from lemmas 2 and 3 respectively.

It will be noted that this theorem merely proves (in certain circumstances) the existence
of an infinity of solutions of the inequality (16) ; it gives no information about the distribution
of the solutions throughout the different parts of the body. In particular cases, more in-
formation can be obtained by direct application of lemmas 1, 2 or 3. We return to this point
in §4.

3. SOME FULLY REDUCIBLE STAR BODIES

All the star bodies which we mentioned on p. 313 as being boundedly reducible are in
fact fully reducible. The method which will be used to prove this is a straightforward modi-
fication of that of Mahler, and rests on modified forms of theorems K and L, and definition
D of Mahler (1946 5). We denote these modified forms by accented letters. As before, we use
K9 to denote, for any ¢>0, the bounded star body consisting of those points of K whose
distance from O does not exceed ¢.

TuroreM K'. Suppose the star body K is not fully reducible. Then there exists a critical lattice A
of K and an infinite sequence of lattices A, A, ... such that

(a) A, is admissible for K©, but not for K;

(b) d(A,) <A(K);

(¢) A,—>A as r—o0.

Proof. Since K® is a bounded star body contained in K, and K is not fully reducible,
there exists a critical lattice A® of K® which is not admissible for K. Since

d(A%) = A7) <A(K), (17)

and A® is admissible for K@, the lattices A®, A®, ... form a bounded sequence; and so, by
theorem 2 of Mahler (1946 a), they contain a subsequence

A =A®, A, = A®),

converging to some limiting lattice, A, say.

Since k,>r, the lattice A, = A% is admissible for K© but not for K, and consequently
(a) holds. Conclusion (b) follows from (17) and conclusion (¢) is obvious. We have only to
prove that A is critical for K. Since the lattices A, converge to the lattice A, we have

d(A) = Limd(A,),

and by (17) and the corollary to theorem 10 of Mahler (1946a),
limd(A,) = limd(A®) = lim A(K®) = A(K).

Thus d(A) = A(K), and we have only to prove that A has no point, other than O, strictly
inside K. If P were such a point, then P would be strictly inside K® for all large . But the
lattice A, has a point P, which tends to P as r—>0c0, and this contradicts (a).
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DerintTioN D', A critical lattice A of K is said to be fully critical if there exists a bounded star
body H contained in K with the following property: any lattice N which is sufficiently near to A and is
admissible for H either has d(A') > d(A) or is a critical lattice for K.

Tueorem L. Suppose that every critical lattice of K s fully critical. Then K is fully reducible.

Proof.t Suppose K is not fully reducible. By theorem K’, there exists a critical lattice A
of K and an infinite sequence A,, A,, ... of lattices for which (a), (4) and (¢) hold. We assert
that A cannot be a fully critical lattice of K. For if H is any bounded part of K, then H will
be contained in K@ for all large 7, and A, will be arbitrarily near to A and will be admissible
for H. Now (b) asserts that d(A,) <d(A), and (a) asserts that A, is not a critical lattice of K.
Thus, by definition D’, A is not a fully critical lattice of K. This contradiction proves the
theorem.

In all those cases, specified on p. 313, in which Mahler proved K to be boundedly reducible,
the same argument, with theorem L’ in place of theorem L, shows that K is also fully reducible.
Mabhler’s proof is, in each case, based on the fact that every critical lattice of K is of the form
QA,, where Qis an automorphism of K and A is a certain special critical lattice. His argument
proves the existence of a bounded star body K* contained in K with the property that every
lattice A*, which is admissible for K* and which is sufficiently near to A,, is either a critical
lattice of K or has determinant greater than A(K). Thus A, is fully critical, and so every
critical lattice of K is fully critical; consequently it follows from theorem L’ that K is fully
reducible.

A further investigation is needed, however, in the case of the three-dimensional star body

K defined b
defined by | (8443 5y | <1, (18)

since Mahler’s proof that this body is boundedly reducible is incomplete. It was proved by
Davenport (1939) that

A(K) = }./(23). (19)
One known critical lattice of X is the lattice A, given by
%, 1%y = u;+ Ouy+-0%us, x5 = u) +Pu,+ P2ug, (20)

where ¢ is the complex root and ¢ is the real root of the cubic equation 3 —¢—1 = 0. Auto-
morphisms Q of K are given by

Xy +ixy = A(x) £ixy), x5 = pxs, (21)
where A is any complex number and # is any real number, subject to | A%« | = 1. Thus every
lattice of the form QA is also a critical lattice of K. Mahler bases his proof that K is boundedly
reducible on the statement (attributed to Mordell) that every critical lattice of K is of this

form. But Mordell (1942) did not prove as much as this; his results were as follows. (a) If
L,, L,, Ly are real linear forms with determinant A==0, the inequality

21 ]2 2 iy
I(L1+L2)L3‘<J(23) [A]+

+ The proof of theorem L in Mahler (19465) does not seem to be worded quite clearly. The body K*
determines ¢, and ¢ determines A. By definition D, the lattice A, if it is strongly critical, determines another
bounded body K’ contained in K. It is plain that K’ cannot legitimately be confused with K*. However,
no difficulty arises if clause (a) of theorem K is read with K%+ in place of K®. :
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318 H. DAVENPORT AND C. A. ROGERS ON DIOPHANTINE

is soluble for any ¢>0 with integral values, not all zero, of the variables. (4) The least value
of the product on the left is 2| A|/./(23) when and only when

:/~(§é—) | A| X (u; + Ouy+ 0%ug). (22)

The statement (@) implies that A(K)=>%./(23). The statement (b), read with the word
‘when’, tells us that the particular lattice given by (20) is admissible, and it follows that
A(K) = %./(28). The other half of the statement (b) asserts that if the product attains its
lower bound, and the value of this lower bound is 2|A|//(23), then the product satisfies
(22). The hypothesis is satisfied by the product corresponding to a critical lattice of K pro-
vided that this critical lattice has a point on the boundary of K. It follows that every critical
lattice of K, which has a lattice point on the boundary of K, is of the form QA for some auto-
morphism Q of K.

It is, however, possible to modify Mahler’s proof by basing it on a weaker proposition,
which can be deduced from the result Mordell did prove by the method of the proof of
Mabhler (19464, theorem 20). This proposition, which can also be deduced directly either
from Davenport’s original proof of (19) (Davenport 1939) or from Mordell’s proof (Mordell
1042), is: '

LemMmA 4. Every critical lattice of the body K defined by (18) s of the form QA*, where Q is an
automorphism of K and A* is arbitrarily near to A, and has a point of the form (a,0,a), where a 1s
arbitrarily near to 1.

Proof. Suppose A is a critical lattice of K. There exists a sequence of points P® of A (not
necessarily distinct) satisfying

(L34 L8) Ly ~

1
1<| (B Ha) 5 | <14,

for r = 1,2, .... We can choose a sequence of automorphisms (® of K such that the points
QOPO are of the form (a®, 0, a®), where

1
1< (@) <14

for r = 1,2, .... The sequence of lattices Q®A is a bounded sequence, and so (by Mahler
19464, theorem 2) contains a subsequence

QlA‘ == Q(kl)A., QzA - Q(kz).A.,
converging to some limiting lattice A’, say. Since Q,A is a critical lattice of K, and there is
a point Q, P, of Q A of the form (a,, 0, a,), where

1
1<(q,)3 <1+,

it follows that A’ is a critical lattice of K and that (1,0, 1) is a point of A’ on the boundary
of K. v
By Mordell’s result, stated earlier, the lattice A’ must be of the formt ®A,, where @ is
an automorphism of K. Now the lattices ®1Q, A converge to the lattice A, As (1,0,1) is
t As (1,0, 1) is a point of A’ it is natural to suppose that A’ = Ajor A’ = A, where Ko is obtained from

A, by changing x, into — x,. This is not obvious, but it is in fact true, as we prove on p. 337. The difference
between the statements that every critical lattice of K is of the form @A, for some automorphism ® of K and

that a critical lattice with (1,0, 1) as a lattice point is necessarily either A, or A, seems to have escaped
notice. A similar problem arises on p. 333 in connexion with the body | x,%,%; | <1.
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a point of A, there are points @, of ®1Q A, forr = 1,2, ..., converging to the point (1,0, 1).
Consequently there is a sequence of automorphisms ®,, r = 1,2, ..., converging to the unit
automorphism and transforming the points @, into points of the form (4,,0,5,), where b,
converges to the limit 1. Taking

A* =0,01Q,A, Q=0 100!,

and r sufficiently large, A is of the form QA*, where A* is arbitrarily near to A, and has a
point of the form (a, 0, a), a being arbitrarily near to 1. This proves the lemma.

We now apply this lemma to complete the proof that K is fully reducible. Mahler proves
(19464, pp. 623-626) that there exists a bounded star body K* contained in K such that
if A* is any lattice which is sufficiently near to A,, and is admissible for K*, and has a point
of the form (a, 0,4) with a sufficiently near to 1, then either d(A*)>A(K) or A* = A, (the
result is not stated in exactly this form, but this is the conclusion reached on p. 626). By
lemma 4, any critical lattice of K is of the form QA*, where A* satisfies the above conditions
and where d(A*) = A(K). Thus A* must coincide with A,, and so every critical lattice is
of the form QA,. This justifies the statement which was previously unproved. The result of
Mabhler, just quoted, shows that A, is fully critical, and consequently every critical lattice
of K is fully critical and K is fully reducible.

We conclude by listing formally those star bodies which we have shown to be fully
reducible.

THEOREM 2. The star bodies defined by the following inequalities are all fully reducible, and have
the determinants stated:

—1<x %, <k, A= /(R4 4k), (24)

Jor any positive integer k; [ %, %525 | <1, A=17; (25)
| (¥ +23) x5 | <1, A=3$/(23); (26)

|23 +x3—x3|<1, A=3; (27)

|af+adtag—af <L, A=JE; (28)

|x7+x3—xf—a%|<1, A=3. (29)

We now restate, in arithmetical form, the implications of theorem 1 for each of these
bodies, as it may be convenient to have the results on record.

THEOREM 3. Let xy, ..., %, be real linear forms in u,, ...,u, of determinant D=0. Each of the
following inequalities has an infinity of solutions, and, indeed, has an infinity of solutions with strict in-
equality unless the form in question is equivalentt to a multiple of the special form indicated. In that
case there are no solutions with strict inequality other than the trivial solution in which all the variables

are zero: 1 :
|x1x2|<yg|D[ (n=2), (30)
ud+uy u,—uj; (30a)
— (R2+4k) | D | <x 2, <k(R2+4k)"} | D| (n=2), (31)
kud + kuy uy—u3, (31a)

t Equivalence refers to linear substitutions on u,, ..., 4, with integral coefficients and determinant + 1.

Vol. 242. A. 42
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where in (31) and (31 a) k is a posiitve integer;
| %2y %5 | <% | D | (n=3), (32)
ui +ud 1l — 4(upuf +ugui +uy 13) + 3(udus - ufuy +ufuy) —uyuyus; (32a)
| (+59) 5| 5 1 D) (n=3), (33
ud+ud+ud+udu, —udu,+ 20t ug—udu, — 3u uyug; (33a)
| 4+ a3 —a5| < (3D%)} (n = 3), (34)
ud+uy uy -+ ul—2ui; \ (34a)
| #f+ 23425 — 2% | < ($D)* (n=4), (35)
U+ 0 Uty — gty — Uy (350)
| a3t 23— 25— a7 | < (§D)* (n = 4), (36)
W} —ud—ud+ui+ 2uy uy+ 2uy Ug Uy Uy Uy Uy Ug ULy (36a)

The special form in each case is that which arises from the general critical lattice of the
body in question. For proofs that this is so, we must refer to Mahler (1946 6) ; also, for (31),
to Segre (1945), and for (34), (35) and (36) to Dickson (1930, chapters 8 and 9).

4. THE DISTRIBUTION OF THE LATTICE POINTS IN A BODY

So far we have been concerned with the existence of an infinity of solutions of certain
inequalities, or with the existence of an infinity of lattice points in certain bodies. We now
investigate the possible distributions of the lattice points within the bodies.

A star body K, contained in a star body K, will be said to generate K, if for every bounded
part K’ of K there is an automorphism Q of K such that QK contains K'. If K, generates K,
then obviously QK| also generates K, for every automorphisn Q of K. A simple example to
illustrate the definition is

K: | %y ... x

K,: [ 2002, | <1, Jx,|<1, o, [x,|<1.

For, given any bounded part K’ of K, we can choose A so large that the automorphism
xp = Ay, Xy = Ak, ., X = AX,

transforms K, into a body which contains K'.
Using this definition we can prove a stronger form of theorem 1.

THEOREM 4. Suppose that K is a fully automorphic star body and K, is a star body which generates
K. Suppose A is a lattice with determinant A. Then

(@) tf A<A(K), there are an infinity of points of A strictly inside K,

(b) if K is boundedly reducible and A<A(K), there are an infinity of points of A in K, and

(¢) if K is fully reducible and A<<A(K), there are an infinity of points of A strictly inside K, unless
A is a critical lattice of K, in which case there are an infinity of points of A on the boundary of K.

Proof. To prove clause (a) we use lemma 1. We suppose that A<<A(K) and choose 1<1
so that A<<AA(K). Let k£ be a positive integer and consider the bounded star body H, ,
contained in K given by lemma 1. Then as K, generates K, there is an automorphism £, of
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K such that €, K, contains H)_,. Now since the determinant of the lattice A is A<AA(K),
there are at least 21 points of (, A which are strictly inside H),_,, and which are therefore
strictly inside €2, K. Thus there are at least 24+ 1 points of A strictly 1n51de K,, and as £ may
be arbitrarily large there are an infinity of points of A in K.

The clauses (b) and (¢) follow from lemmas 2 and 3 by the same argument.

5. THE APPLICATION OF THEOREM 4 TO CERTAIN DIOPHANTINE INEQUALITIES
We now apply theorem 4 to some of the bodies listed in theorem 2, and formulate the
results in arithmetical terms.

THEOREM 5. Let %, %y, %5 be real linear forms in u,, uy, us of determinant D==0. Suppose that
the product x, x,x4 is not equivalent to a multiple of

1 413 -+ uf — 4w uf + us 1l -+ uy uf) + 3(ufus + ufuy +ufuy) —uyupuy, (37)

Then the inequalities [ %1 %,%5 | <T| D[, |x]<e, |x5]<e (38)

have infinitely many solutions for any ¢>0. If x,x,%5 is equivalent to a multiple of (37), there are no

solutions of (38) other than u, = u, = us = 0, but there are infinitely many solutions of

| %2025 | =% [ D, | %] <e, |x5]<e (39)
Sor any ¢>0.

Proof. 'The body K defined by | x,x,%; | <3| D | is fully automorphic and fully reducible,

and is generated by the body K|, defined by
|21 %55 | <[ D, [x]<e, [x5]<e
Also A(K) = | D |.

The lattlce of points (¥, x,, #;3) corresponding to integral values of u,, u,, u, has determinant
| D |, and is a critical lattice of K if and only if the product x, #,x; is equivalent to a multiple
of the form (37). The conclusions now follow from (¢) of theorem 4. The assertion con-
cerning (39) may also be deduced from classical results concerning the units of totally real
cubic fields, since the form (37) is the norm-form for the field £(0), where 8362 —26 —1 = 0.

THEOREM 6. Let xy, Xy, x5 be real linear forms in uy, uy, uy of determinant D==0. Suppose that
the product (x2 4-x3) x4 is not equivalent to a multiple of

ud+ud+ud+udu, —udu,+ Qu% U — UGy — 3y Uy Us. (40)

Then the inequalities | (x1 +x3) x5 | <—rmmy J | D], |x|<e (41)
have infinitely many solutions for any >0, as also have the inequalities

| (x3-+x3) x3|<J |D|, x}+ax3<e. | (42)

If (x} -+ 3) x5 is equivalent to a multiple of (40), then (41) and (42) have an infinity of solutions if the
Jirst inequality signs are replaced by equalities.
Proof. This is similar to that of theorem 5, and depends on the facts that the body
](x1+x2)x3|<J |D|

42-2
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is fully automorphic and fully reducible, and can be generated either by

2
| (%% +3) x5 |<J(23) | D, |x3]<e,
2
or by | (2% +43) x3|<7(‘2‘3“) | D], #f+ai<e.

TrEOREM 7. Let Q(uy,uy, u;) be an indefinite ternary quadratic form with determinant d=0,
and let Q(u,, uy, us) denote the adjoint form. Let Ay, Ay, Ay be any real numbers satisfying

: L Q41,45 45) = 0. (43)
Then the inequalities
| Qupyugyug) [ (G IA])E, | Ay +Aquy+Ayuy | <e (44)

have infinitely many solutions for any ¢ >0. If Q(u,,u,, us) is not equivalent to a multiple of
U3+ uy Uy + ul— 2u}, (45)

these conclusions hold with strict inequality in the first part of (44).
Proof. Without loss of generality we can suppose d<<0. There exist linear forms x,, x,, x;
in u;, u,, us, of determinant /3, such that

Quy, y, ug) = (—3d)* (x] -+ 45— 25)
identically in u,, u,, u;. Then
Aytiy Aoty + Agtug = py Xy + pry Xy g %,
where K+ 13 = 13
by (43). By applying successively two linear transformations of the forms
x, = x1cos0+x58inf, x,=—x;sinf+xycosl, x;=xi,

and x, = xjcoshu—+xisinhu, x,=x5 x5=xsinhu+x;5coshuy,
each of which leaves x7+x3 —x% invariant, we can ensure that

=1, =0, p3=1,
so that Ay Agutg+Aguy = %+ X5.

The star body K defined by |x2+x3—2%| <1

is fully automorphic and fully reducible, and A(K) = /3. It is generated by the body K,
defined by |xf+xd—a3 | <1, |x+x5]<e

The lattice of points (x,x,,%;) which correspond to integral values of u,, u,, u; has
determinant /3, and is a critical lattice of K if and only if Q(u,,u,, u;) is equivalent to a
multiple of (45). The conclusions now follow from (¢) of theorem 4.

Theorems analogous to theorem 7 hold also for indefinite quaternary quadratic forms.
For a form Q(u,, u,, us, u,) of signature (3, 1), an appropriate linear inequality corresponding

in (44) i
to that in (44) is |/11u1+’12”2+’13“3+’14u4|<€’ (46)
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where Q(;,1,,14;,4,) = 0. For a form of signature (2,2), one can impose two linear in-
equalities: | vy +Aquy+ s+ Aguy | <6, |yt ppthy +pstisg gty | <6 (47)
where the A’s and p’s are any real numbers satisfying

QA1 Ags A3y Ag) = 0y Q (i1, g, i, ftg) = 0,
2Q Q Q 2Q
M7=+ A7+ g7+ A5 =0
You, " P opy " Oy " oy
For it is possible to transform @ into x3+ x—x3— 3 in such a way that the two inequalities

(47) become |2 +x5 | <€, |p(ag+x5)+x,+%, | <€,

and the proof then follows the same lines as before.

6. A FURTHER RESULT ON THE DISTRIBUTION OF LATTICE POINTS

We now prove a result applying to star bodies which, though automorphic, are not
necessarily fully automorphic. This will serve as a partial substitute for theorem 4, which
related only to fully automorphic star bodies.

Let K be an automorphic star body, and let K, generate K. We say that an automorphism
O of K reduces K, if OK ; is properly contained in K,. We define C (K, ©) to consist of all points
which are common to all the star bodies @K, for v = 1,2, ...; and we call C(K, ®) a core
of K. Obviously the origin belongs to every core. It is clear that

OC(K,, ®) = C(K,, ®).

Perhaps the simplest example of a star body which is automorphic, but not fully auto-
morphic, is the hyperbolic cylinder, defined by

EEARSNNENES B (48)
Here we can take K|, to be the star body defined by
[x2, | <1, [x]<1, |x]<1, (49)‘
since then K|, clearly generates K. Let ® be the automorphism
X = %x;’ Xy = 2x§, X3 = xf; (50)
Then ® reduces K, since OK is defined by

|2xy [ <L, [2]<$, %<1
Since @K, is given by | %%, | <1, |x2|<$, | %3] <1,

we see that C(K,, ®) is simply the infinite rectangle
xz == O, ' x3 I < 1.
We can now state and prove the theorem which takes the place of theorem 4.

THEOREM 8. Suppose that K is a star body generated by a star body K, and that ® is an auto-
morphism of K which reduces K. Suppose that A is a lattice with determinant A which has no point
other than O in C(K,, ®). Then the conclusions (a), (b) and (c) of theorem 4 are valid.
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Proof. We show first that A(K,) = A(K). (51)
As K, generates K, there exists, for any ¢> 0, an automorphism Q of K such that QK| contains
KO. Now AK)=A(Ky) = AQK,) >A(KO).

But, by a theorem of Mahler (19464, equation (8:21)), A(K®) tends to A(K) as t—>oc0. This
proves (51).

We can now prove the conclusion () of theorem 4. Suppose that A<A(K). Then
since A<A(K) = A(®"K,), there is a point other than O of A in the interior of ®”K, for
v=0,1,2,.... If these points comprised only a finite number of distinct points, then at least
one of them would be common to all the bodies ®K,, and so would lie in C(K,, ®),
contrary to our hypothesis. Thus there are an infinity of points of A in the interior of K.

Suppose now that A<A(K) and that K is boundedly reducible. Then there is a bounded
star body K’ contained in K with A(K’) = A(K). Since K generates K there is an automor-
phism Q of K such that QK contains K’. Now the lattice Q2®>A has determinant

- A<A(K) = AK'),

and so there is a point other than O of Q®=A which is in K’ and which is therefore in QK.
Thus there is a point other than O of A in the body @K, for v =0, 1,2, .... It follows just
as in the last paragraph that there are an infinity of points of A in K. This proves that the
conclusion () of theorem 4 is valid in the present case.

The conclusion (¢) of theorem 4 may be established by a very similar argument, using the
fact that, if K is fully reducible, there is a bounded star body K’ contained in K such that
A(K’) = A(K) and such that every lattice, which has determinant A<A(K) and which has
no point other than O strictly inside K’, is necessarily a critical lattice of K.

CoroLLaRY. Ifd(A)<A(K), then either A has an infinity of points in the interior of K or A has
a point other than O in every core of K.

We conclude this section by applying the corollary to the body K defined by (48). As we
have seen, one core of K is given by :
x,=0, |x;]|<L. (52)

The only other core of K is obtained by interchanging the roles played by x, and x,, and
is given by 5 =0, |x]<l. (53)

It was proved by Varnavides (1948) that the critical determinant of K is ,/5. Hence the
above corollary tells us that any lattice A with determinant less than ./5 has an infinity of

points inside the body | 2%, | <1, |23]<1,

except possibly if the lattice has a point other than O satisfying (52), and also has a point
other than O satisfying (53).
We can state this result in an arithmetical form as follows:

THEOREM 9. Let x,, Xy, %5 be real linear forms in u,, u,, ug of determinant D +0. Let A, pu be any

positive numbers satisfying 1
/1/1>% | D . (54)
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Then the inequalities [ %12, | <A, | %5 |<p (55)

have an infinity of solutions, except possibly if there exist integers u,, uy, us, not all zero, satisfying (52)
and there also exist integers u,, u,, us, not all zero, satisfying (53).
The following examples are of interest in connexion with this theorem. First, there is

the example Xy = uy+Ouy, xp=u;+(1—0) uy, x5 = au,+puy+cus, (56)

where ¢>0 and 6 = $(14./5) and a, § are any real numbers. The determinant of the forms
is —¢./5, which may be arbitrarily small; but the inequalities

[ %2, | <1, |x5]<1 (57)
have only a finite number of solutions. For since
Xy Xy = uf+u, Uy —u3,

the first inequality implies that u; = u, = 0, and the second then allows only a finite number
of possibilities for us.
Secondly, there is the less obvious example
2y = k(uy+-O0uy+-Oug), 2y = k(uy+ (1—0) uy+Oug), x5 = 6us, (58)

where %> 1 and > 0. The determinant of the forms is — k2 /5, whichmay be arbitrarily small,
but again the inequalities (57) have only a finite number of solutions. To prove this, we assume

that the inequality | K20ty + Oty -+ Ou) (g + (1 —0) tyt-Otg) | <1 (59)
has an infinity of solutions for which u, is bounded, and obtain a contradiction. We have
| (y+Ouy+Oug) (uy+ (1=0) uy+ (1—0) u5) | >1,

unless u; = u,+u; = 0, and it follows from (59) that

1
| uy 4 (1—0) uy+Oug | <p |4 (1=0) uy+ (1 —0) ug|.

Similarly |u1+¢9u2+6’u3|<k12lul+ﬂu2+(1——t9) Us |,

unless #; +uy = uy—ug = 0. But since k>1 and 4, is bounded, these inequalities imply that
uy+(1—0)u, and wu,+0u,

are both bounded, so that u; and u, are both bounded, contrary to hypothesis.

These examples are consistent with theorem 4 because K is not fully automorphic, and
they are consistent with theorem 9, because, in each case, there are integers u,, u, #;, not
all zero, satisfying (52), and also integers u,, u,, u;, not all zero, satisfying (53).

7. ISOLATION THEOREMS

Let F(xy,...,x,) be any one of the forms in theorem 3. The existing literature of the
geometry of numbers contains results which not only give the best possible inequalities

of the form | F(xyy...p%,) | <A

which are always soluble, but go further, and show that this best possible inequality is, in
a certain sense, ‘isolated’. By this we mean that an appreciably stronger inequality is soluble
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if the form in question is not equivalent to a multiple of the corresponding critical form,
specified in theorem 3. Such isolation results are known for all the forms of theorem 3,
except for that in (26).

Our next object is to establish some analogous results when the inequality in question is
required not only to be soluble, but to have infinitely many solutions.

The simplest form, and the one about which most is known, is the form x,x, in two
variables #,, u#,, and an account of this case will serve as an introduction to the later work.

As we shall not, henceforward, be concerned with forms in more than four variables, we
abandon the suffix notation, and denote the forms by x, y, ... or X, ¥, ... and the variables
by u, v; ....

The product XY of two real linear forms in «, v of determinant D is an indefinite binary

quadratic form: XY = au®+buv+cv? = Q(u,v),

whose discriminant is d = D?. A famous theorem of Markofff asserts the existence of an
infinite sequence @, Q,, ... of special forms, with discriminants d,, d,, ..., with the following
properties. The inequality d

Qo) <, /7 (60)
is soluble for any form @ which is not a multiple of one of @, @,, ..., @,_;. The inequality
(60) is soluble with equality, but not with strict inequality, if @ is equivalent to a multiple
of @,. The numbers d,, d,, ... increase steadily, and

dy=5, dy=38, d3 =25, dy= 1156197) ceesy

the limit of d, being 9.
The nth Markoff form can be written

Qn(u) U) = (u—-—ﬂnv) (u—¢nv)= (61)
where 0, §, are certain conjugate quadratic irrationals, depending on 7, and
Iﬁn_¢n! :\/dn' (62)

The minimum of | Q,(x,v) | is 1. It is known that Q,(x,v) assumes each of the values 1 and
—1, and does so infinitely often, with values of u, v for which either factor in (61) becomes
arbitrarily small.t

We now investigate the circumstances under which the inequality (60) has, or has not,
infinitely many solutions. For this we need to quote one further result (Koksma 1936),
namely, that if # is any irrational number which is not equivalent§ to any of 4, f,, ..., then
there are, for any ¢> 0, infinitely many pairs of integers , v (v>>0) for which

| (u—0v) v| <k+e. (63)

t For references, see Koksma (1936, Kap. 11, § 2). A comparatively simple proof of Markoff’s theorem
is given in Cassels (1949).

t For the fact that @ ,(x, v) assumes both 1 and —1, see, for example, Dickson (1930, last clause of theorem
74). The rest of our assertion follows by the classical theory of the periodic chain of reduced forms equivalent
to a given form.

§ Two irrational numbers 6, 6 are said to be equivalent if 0 = (a6’ +5)/(c0’ +d), where a, b, ¢, d are
integers with ad —bc = + 1; or, what is the same thing, if the continued fractions for 6 and 0" have the same
‘tails’. It is known that 8, and ¢, in (61) are equivalent.
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This is a classical result, and is proved by Markoff’s methods, based on the theory of con-
tinued fractions.
Now consider any indefinite form @ («,v), which we can write, after removing a constant

factor, as Qu,v) = (u—00) (u—go),
where |0—¢| = ./d. (64)
We shall suppose that ¢ and ¢ are both irrational; if one of them is rational, or both are

rational, (60) has a trivial infinity of solutions.
Suppose first that ¢ is not equivalent to any of 8,, 0,, .... Since

Q(u,0) = (0—9) (u—0v) v+ (u—00)?,
it follows from (63) and (64) that the inequality

| Q(w,0) | <5 Jd+e
has infinitely many solutions for any ¢>0. The number on the right can be made less than
J(d]d,) for any given n, by suitable choice of ¢. Hence, in this case, (60) has an infinity of
solutions for any given n.
Suppose next that @ is equivalent to ,. After an integral unimodular substitution on , v,
and the removal of a constant factor, we can write

Q(u,0) = (u—0,v) (u—9"v),

where |6,—¢"| = ./d.
We have Q(u,v) = Q,(u,v) (Z:Z’i;)
0,4 | (F—d)t
SRR e o e 99

where = %—H,,.

Now let u, v assume integral values, with <0, for which @, («,v) = -+ 1, and for which u—0,v
is arbitrarily small. In (65), 0 —4 d
s
u

0,9,
Qo) = (5 ~0,) (1—4,) = w18, —4,+0).

and ¢ is arbitrarily small. Also

v

Hence the additional term in the expression in brackets in (65) takes both positive and
negative values as @, (u,v) takes both the values 1 and —1, unless ¢’ = ¢,, in which case the
additional term is zero. It follows that if § is equivalent to @,, the inequality (60) has in-
finitely many solutions with strict inequality, unless the form @ (u, v) is equivalent to a multiple
of the form @,(u,v), in which case there are no solutions with strict inequality.

Putting together the results proved above, we obtain the following:

THEOREM 10. Let Q(u,v) be any indefinite binary quadratic form with irrational roots 6, §.
Suppose that one at least of 0, @ is not equivalent to any of 0,, ...,0,_,. Then the inequality

Q) <,y | (66)

Vol. 242. A. 43
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has infinitely many solutions, with the corresponding linear factor of Q(u,v) arbitrarily small; further,
the inequality (66) has infinitely many such solutions with strict inequality unless the form Q is equivalent
to a multiple of the form Q,, in which case there are no solutions with strict inequality (except u = v = 0).

8. ISOLATION THEOREMS FOR XYZ

Let X, Y, Z be real linear forms in u, v, w of determinant 1. The available knowledge
concerning the ‘successive minima’ of the product XYZ is much less than the corre-
sponding knowledge, provided by Markoff’s theorem, for the product of two linear forms in
two variables. Only the first two minima are known, and we quote the result in the form
of a lemma.t

LemMa 5. Let X, Y, Z be real linear forms in u, v, w of determinant 1. Either (1) the product
XYZ is equvalent to

7wt 0v+0%w) (u+go+¢w) (u+yo+J*w), (67)
where 8, ¢, yr are the roots of t3-+12—2t—1 = 0, in which case its minimum is +; or (2) the product is
equivalent to Lt O0-+0%0) (u+-go-+¢w) (utyo+yw),  (e8)

where 8, ¢,  are the roots of 13— 3t—1 = 0, in which case its minimum is §; or (3) the inequality

1
is soluble.

It is important for what follows to observe} that in each of the cases referred to in the
enunciation, the field £(6) is galoisian and cyclic. The numbers 1, §, 62 form a basis for the
integers of £(f). 0 itself is a unit, with norm 1. The numerical values of 4, ¢, § are

0 =1246..., ¢=—0445..., ¢ =—1-80L..., (70)
in the first case, and
0 =1-879..., ¢=—0347..., =—1:532..., (71)
in the second case. We denote conjugates by accents, the order being fixed by §" = ¢, 6" = ¢.
Owing to the cyclic nature of the field, we have
(al)l — a//’ (all)l —=q
for any element « of £(6).

For the present investigation we need the following three lemmas, which are valid for

each of the two cubic fields defined above.

LemMMA 6. There exists an absolute constant A>1 with the following property. For any positive
numbers A and u there exists a unit v in the field k(0) such that

1 :

7 < Fo <4, (72)

% < ﬂ:w' < Aﬂ: (73)
1 A

L " £ 4

where the three signs may be prescribed arbitrarily.

1 The result is due to Davenport (see Davenport 1943).
+ For these facts, see Davenport (1943)-
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Proof. It suffices to prove that there exists a constant B such that, for any positive 2, g,

there is a unit w satisfying 1
E/1< 4w < BA, (75)

< 0’ < By, (76)
where the signs may be arbitrarily prescribed, and where also the sign of w” may be
arbitrarily prescribed. For then 1 B2

B9 <3

and the lemma then follows with 4 = B2,
We take w = 4-¢"y*, where 7, s are integers. The signs of w, ', " are

E(=) (=) £ £(=)%
respectively, and these may be given prescribed values by proper choice of the parities of
r and s, and proper choice of 4. It therefore suffices to satisfy (75) and (76) with |w| and

||, subject to =r, (mod2), s=s, (mod2). (77)
Write ly=log|0|, l,=log|¢|, [3=1Ilog|y]|.
The proposed inequalities for |w | and |’ | can be written
L—-C<lyr4l;s<L+4C, M—-C<lyr+1ls<M+C,
where L = log A, M =logu, C = log B. We have to prove the existence of C such that these
inequalities are soluble for all A, x4 in integers 7, s satisfying (77).
The linear forms R=1Ilr4ls, S=Ilr+ls
have a non-zero determinant. For if /, = kl; and Il; = £/, then
0=0+L+1,=L1+k+4?),

which is impossible since £ is real and /, == 0. The points (R,‘S) which correspond to integral
values of 7, s satisfying (77) constitute either a fixed lattice or one of three translations of this
fixed lattice. Itis therefore clear that there exists a constant C'> 0 such that every square

L—-C<R<L+C, M—-C<S<M+C
contains one of the points (R, ) in question. This proves the result.

LemMA 7. Let & be a sufficiently small [)osztwe number. Let a, f, y be a cyclic permutation of 0, ¢, .

Let %, y, z be the linear forms
x = u+(oc—l—,01) v+ (a®+py) w

y=ut(f+o)v+(F+0))w, (78)
z=u+(y+1)v+ (2 +1)w

where py, p,, 0, 09, Ty, Ty are all numerically less than 8. Suppose py, py, 01, 04 are not all zero. Then
there exist integers u, v, w, not all zero, such that

|xyz|<1-8,, |x|<1, ly|<1, (79)

where 8, is a positive absolute constant.
43-2
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Proof. Since a, f, 7 is a cyclic permutation of §, ¢, ¢ there exist, for any unit w of £(0),
rational integers u, v, w such that
w=ut+aw+atw, o =ut+fo+pfw, " =ut+yp+yw. (80)

Solving these equations, we obtain linear expressions for v and w in terms of 0, ', w”. Sub-
stituting in (78), we get
X =0+p30+p,0 +p50°,

y=0+o0+0,0 +os0, (81)

z=0"4+130+7,0 +750".
The coeflicients here are given by
Apy = (B2=y%) pr—(F—7) Pz,l
Apy = (y*=a®) py—(r—2) /72>'
Aps = (@2 =F2) pr—(@—=F) p2,

and by similar formulae for ¢, 7, 75, 75, 7,, 75, where

(82)

1, o &
A= 1> ﬂa ﬂz )
Loy 7

so that | A| = 7 or 9. Since all the coeflicients on the right of (82) are numerically less than 7,
it follows that ps, ..., 7; in (81) are all numerically less than 20. We rewrite (81) as

xfo = 1+ ps+p,0 [0+ ps0” /o, '
ylo' =1+0,+050/0 +050" |0, (83)
z[o" = 1+75+T30/0" +7,0"[0". ]

Case 1. Suppose that ps and oy are not both zero. By lemma 6, with x = A, we can choose

so that
ps0" [w<0, 050" <0,

<|w”|<4 (84)

A’

A A , 1
Z<IQ)!<A/)\, Z<!(1)|<A/1, 1?/1—2

where 1 is any positive number. Then

2
1—25~25A2-% | ps | <xjo< 1+23+26A2—1’q’%,

/ 2
1—23—23A2—% | o5 | <ylo'< 1+2§+23A2—-1Ai'2%,
and | zJw" | <1+ 28+ 204223+ 204203

Suppose that | p; | =] o5 | ; the proof in the other case is precisely similar. Choose 2 so that

A2
Bl =1 (85)
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Then | %/w | <1+20(14A42) -—A"“,} (86)
|yfo’ | <1-+28(1+42),
and since 3< 2042
by (85), we have |zJo" | <1+ 20+ 86244,

If § is sufficiently small, it follows from these inequalities that
|xyz | <1—3%A474
It follows from (86) and (84) that | x| and |y | are both less than
{14+20(1+A42)} AA<{1+28(1+A4%)} A/ (2047).

If ¢ is sufficiently small, this number is less than 1, and we have obtained (79).

Case 2. Suppose that p; = o5 = 0. By (82) and the corresponding relations for o3, 04, 05
it is impossible that p, = o5 = 0, since this would imply p, = p, = 0| = 0, = 0, contrary to
hypothesis. By (83),

xjo = 14+ps+pg0'fo, ylo' =1+0,+050/0", z/o" =1+75+T130/0"+1,0 /0"

Suppose that p,==0; the proof when 040 is precisely similar.
By lemma 6, with A = #2, we can choose o so that

P50 [0<0,

A4

/ﬁ’ (87)

B lol<de, Balo|<dy, E<]o”]<
4 > A > Ap’
where 4 is any positive number. Then

A2
1—2(’)‘—|p4|—lt-l— <xjw< 1—{—23-[74’%},
|ylo' | <1+ 20+ 204%,
| zJw" | <1+ 20+ 20A4%u° 4 26 4%u*.

A2
Choose # so that [ 4] i 1,
which implies p<2642.
Then [x/w|<1+20—A4,

|yjo | <1-+28+ (2042,
| zJw" | <1+ 28+ (2042)¢+ (2042)°.
Thus, if § is sufficiently small, we have
|xyz | <1—4A4-4
Also, by (87), | x| and |y | are both less than
{1420+ (2042)2} Ap<<{1+ 28+ (2042)?} 2643.

If 0 is sufficiently small, this is less than 1, and we have obtained (79).
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LemMA 8. Let the linear forms x, y, z be as defined in lemma 7. Suppose now that not all of py, p,,
015 oy Ty, Ty are zero. Then there exist integers u, v, w, not all zero, such that

z|<1-8, |x|<1, (88)

where 0, is a positive absolute constant.
Proof. By lemma 7, we must have p, = p, = 0, = 0, = 0, since otherwise we could satisfy

myz|<1=d,, |x|<l, |y|<L.

Also, by applying lemma 7 to the forms z, ¥, y, we must have 7, = 7, = p, = p, = 0, since
otherwise we could satisfy
|xyz|<1-6,, |z|<1, |x|<]1.

This proves lemma 8.

TueoreM 11. Let X, Y, Z be real linear forms in u, v, w of determinant 1. Either (1) the product
XY is equivalent, by a unimodular substitution on u, v, w, to a multiple of

(u+0v+02w) (u-+gov-+d*w), (89)
where 0, ¢, Y are either the roots of 312 —2t—1 = 0 or of £*—3t—1 = 0, or (2) the inequalities

1

| X|<e, |Y|<e (90)

are soluble for any ¢ 0. In case (1), the inequalities (90) have only a finite number of solutions for each e.
Progf. Let M denote the lower bound of the numbers A such that the inequalities

| XYZ|<d, |X|<p |¥|<p

are soluble for every x> 0 in integers , v, w, not all zero. Such numbers A exist, for, by theorem
5, any A greater than ¥ has the property.
If M <1/9-1, the final assertion of the theorem holds; hence we may suppose that

1
>,
M= o1 (91)
By the definition of M, for every positive integer » there is a positive number g, such that

the simultaneous inequalities

| XYZ|<M(1=3), |X|<py |¥|<p (92)
are insoluble. Again, by the definition of M, the simultaneous inequalities
vz, (X< 171<ta, -

are soluble for every n. Let X*, Y*, Z* (depending on ) correspond to a solution of (93),
so that :

(1 —%)<|X*Y*Z* <M(1+3), X+ <ot | 7| < (94)
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. v X Y Z
Write x=X§, y='—Y—;E, Z=Z¥; (95)
these are linear forms in %, v, w, depending on 7. Their determinant A,, taken absolutely, is
| X*Y*Z* |-1, and so satisfies
_n i <A < " _1_ ( 96)
n-1M TP Sn—1 M

by (94). From the insolubility of (92), it follows that if «, v, w are any integers, not all zZero,

then either ne1

n-+1
The points (#,y, z) which correspond to integral values of u, v, w form a lattice A, of deter-
minant A, which has a point at (1, 1, 1) and has no point except O in the region defined by

| xyz | > or |x|>n or |y|>n.

n—
7_1___':_1 s
Since the lattices A, have bounded determinants, and have no point other than O in some
fixed neighbourhood of O, it follows from Mahler’s basic theorem that this sequence of
lattices contains a subsequence which converges to a certain lattice A. The limit lattice A
has determinant 1/M, by (96), has a point at (1, 1,1), and has no point other than O satis-
fying | xyz | <1.

Let #, y, z denote, for the moment, the linear forms which correspond to the lattice A.
The forms M#x, My, M?z have determinant 1, and their product is never less than M
(except when x =y = z = 0), where M>1/9-1, by (91). It follows from lemma 5 that
M = % or §, and that the product Mxyz is equivalent to one of the two special products in
(67) and (68). Hence, after a unimodular substitution on w, v, w, the linear forms x, y, z are
given, in some order, by

A(u+0v+60%w), B(u+dv+¢2w), Clu+yv+y2w), (98)
where 4, B, C are constants and 6, ¢, ¢ have the two possibilities set out in lemma 5. By
comparison of determinants, ABC = -+ 1.

Since (1, 1,1) is a point of A, there exist integers U, V, W for which the three expressions
(98) all become 1. Since ABC = +1, the number o = U+ 6V +02W is a unit of £(6). As the
numbers 1, §, §>form a basis of £(f), the numbers of the form w~!(u+ v+ 6?w) are the integers
of £(f), and so there is an integral unimodular substitution from u, v, wto ', v', w’ such that

u+0v+ 602w = w(u' + 00" +6%'),

u+gv+¢w = o' (u' +gv’ + §*w’),

utyv+yw = " (W +y' +y’),
where ' and " are the conjugates of w in £(¢) and £(¢). Omitting the accents we can now
writef x=utaww+octw, y=ut+pfo+pw, z=utyv+y2w,

where , §,  is a permutation of 4, ¢, . Since an interchange of X and Y in theorem 11 does
not affect either the hypothesis or the conclusion, we can suppose that «, £, y is a cyclic
permutation of 4, ¢, ¥.

| vyz | < | |<n, |y|<n. (97)

T This result can also be deduced, using the fact that (1, 1, 1) is a lattice point, from the proof of lemma
5 given in Davenport (1943).
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Having determined the nature of the lattice A, we now return to the lattice A,, which
converges to A as n—>00 through some sequence of positive integers. The lattice A,, is therefore

given by & = u+(a+p,) v+ (@2 +py) w,
y=u+(f+o,) v+ (2 +0y) w,

where the inequalities z=u+(y+1)v+ (Y +715) w,

|| <8, |pg| <8, |oy]<<d, |oy|<<d, |7,]<d, |70

are all satisfied, for any 0>>0, if z is a sufficiently large number of the sequence.
Applying lemma 7 to the above forms, we deduce that either

pr=py=0,=0,=0,
or there exists a point other than O of A, for which
xpzl<1-8, |x]<1, |yl<L,
where 4, is a positive absolute constant. This latter possibility cannot arise if z is sufficiently

large, since no point of A, other than O satisfies (97).
We have now proved that one of the lattices A, is of the form

x=utwtatw, y=ut+p+pw, z=ut+y+1)0+H2+7,)w,
where «, f, 7 is a cyclic permutation of 4, @, ¢, where these have one of the two possibilities
of lemma 5. Returning to (95), it follows that XY is equivalent to a multiple of one of the
three products which are obtained by multiplying together two of the three linear forms
ut+0v+0%w, utdv+Pw, ut+yo+yiw. (99)

The three possible products are themselves mutually equivalent. This follows from the
fact that the field is galoisian and cyclic, so that there is a unimodular substitution which has
the effect of permuting cyclically the three linear forms (99). Hence XY is equivalent to
a multiple of (89), and this establishes the main assertion of theorem 11.

It remains to prove the final assertion of theorem 11. For this we may consider three forms

X, Y, Z, where X=ut++0Cw, Y=u+¢v—l—¢2w,

and where Z is any form such that the determinant of X, ¥, Zis 1. We have to prove that the
inequalities (90) have only a finite number of solutions for any ¢>>0. We shall suppose that
0, ¢, ¢ are the roots of 3 2—2¢—1 = 0, and we shall prove that the inequalities

| XYZ | <k, |X|<e |Y|<e (100)

have only a finite number of solutions for any ¢>0, where « is any fixed number less than .
The same proof applies in the other case, with § in place of 3.
The argument is a familiar one. Since any four linear forms in u, v, w are linearly dependent,

there exists an identity Z — c(utyo+P2w) +aX +bY,
where a, b, ¢ are constants. By comparison of determinants, ¢ = +%. Hence
| XYZ | =% | (u+0v+0%w) (u+gv+¢%w) (u+yv+y2w) | —| XY(aX+b7) |
>1—| XY(aX+0Y) |, : ~ (101)
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provided u, v, w are not all zero. If (100) had infinitely many solutions, there would be some
with | Z| arbitrarily large, and consequently | XY | arbitrarily small. But then, since | X |
and | Y| are bounded, we would have | XY(aX+5Y) | arbitrarily small, and (101) would
contradict the first half of (100), if « is a fixed number less than 1. This establishes the result
in question, and the proof of theorem 11 is complete.

THEOREM 12. Let X, Y, Z be real linear forms in u, v, w of determinant 1. Either (1) the product
XYZ is equivalent to a multiple of

(u+0v+60%w) (u+dv+¢?w) (u+yov+y2w), (102)

where 0, @, ¥ are either the roots of B3+12—2t—1 = 0 or the roots of £#—3t—1 =0, or (2) the
inequalities
1

| XYZ| <57,

| X|<e (103)
are soluble for any > 0.

Proof. 'This is substantially the same as the proof of theorem 11, except that we appeal
to lemma 8 instead of to lemma 7. The interchange of two forms which is made in the course

of the proof must now be effected with Y and Z.

CoroLrARY. Let X, Y, Z be real linear forms in u, v, w of determinant 1. The inequality
| XYZ | <—
9-1

has an infinity of solutions, unless the product XYZ is equivalent to a multiple of the product (102), where
0, ¢, Y are either the roots of 13+ t2—2¢t—1 = 0 or the roots of *—8t—1 = 0.

A few comments on theorems 11 and 12 suggest themselves. It will be seen that in theorem
11 we prove, effectively, that except in the excluded cases, the inequality

1
| XYZ| <5

has solutions in which two of | X|, | Y|, | Z|, prescribed at will, are arbitrarily small. The
excluded cases are analogous to those in theorem 10, in that they relate to the corresponding
linear factors and not to the product. On the other hand, by relaxing the subsidiary con-
ditions to one, in theorem 12, the excluded cases are greatly simplified. This represents a
possibility which obviously could not arise with a product of only two linear forms.

In theorem 12 we have not described the situation which arises when XYZ is equivalent
to one of the special products (102). In this case, by obvious considerations with units, the

7}
equation |XYZ| =1 or},

as the case may be, has infinitely many solutions, and among them are solutions in which
two of | X|, | Y|, | Z|, prescribed at will, are arbitrarily small.

9. ISOLATION THEOREMS FOR (X2+4Y?2) Z

~ We now investigate the possibility of obtaining for the product (X2 ¥2) Z similar results
to those proved in § 8 for the product XYZ. Again X, Y, Z are real linear forms in u, v, w of

Vol. 242. A. 44
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determinant 1. Here the basis of knowledge from which we start is much slighter than it
was there. Indeed, the known result of Davenport (1939), proved later more simply by
Mordell (1942), that A(K) = %./(28) for the body K defined by | (x2+y?) z | <1, only shows
that the inequality

| (X2417?) Z|< ( )—i—e

is soluble for every ¢>0. We have, however,‘seen in theorem 3 (33a) that the inequality

2

729 (104)

| (X224 17?) Z|<

has an infinity of solutions, unless (X?+ Y?) Z is equivalent to a multiple of the special product
(40), which is (u+Ov+0%w) (u+0v+0%w) (u+go+ $w),
where 6, § are the complex roots and ¢ the real root of ##—¢—1 = 0. Numerically,

0 =—0662...+i0-562..., ¢=1324....

The question of the isolation of the inequality (104) is one which must be formulated with
some care (see Davenport 1941). The excluded case for the inequality (104) occurs when
(X%2+Y?) Z is equivalent to

7(—3-3—) (P2+Q?) R
where P+iQ = u+0v+0%w, R =u+gv+¢w. (105)
The minimum of | (P24 Q?) R| is 1. Now consider the possibility that (X24Y2) Z is equi-
valent to 2
J23(1+ 2+ 4%} (P2+ Q>+ (AP+pQ)?) R, (106)

where A and y are real. As
PR QU (AP+4Q)? = (422447 Pt (L+2%+4%) QP— (kP—AQ)?,

it is clear that the minimum of the absolute value of (106) lies between the limits

2 142244
ey W

As these limits are arbitrarily near to 2/,/(23) if A and y are arbitrarily small, the inequality
(104) certainly cannot be isolated unless we exclude the possibility that (X?>+Y?)Z is
equivalent to (106).

We shall, however, prove that the inequality (104) is in fact isolated, if the above possi-
bility is excluded, and that this isolation still applies if an infinity of solutions are required.
For this we need three lemmas. We denote by K the body in three-dimensional space

defined by | (x2+92) 2| <1.
LemMA 9. For any 8>>0 there exists a number 8’ >0 with the following property. Any lattice A
which is admissible for K and has a point at (1,0, 1), and for which
(A)<$./(23) 47, (107)
is given by ‘ x4y = u+(0+p,) v+ (62+py) w,}
(

2 = ut (goy) o (o) w, (108)
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where p,, p, are complex and oy, o, are real, and
lou] <8, [po| <8, [oy|<8, || <d. (109)
Proof. Let A, be the lattice defined by
| x+1y = u+0v+0%w, z=u-+dv+Pw,

and TXO that derived from it by changing y into —y. If the lemma is false, then for some §>0

there exists, for any §’ > 0, a lattice satisfying the hypotheses, which is not of the form stated

in (108) and (109). Hence there is a sequence A, of lattices, each admissible for K and having

apointat (1,0, 1),such thatd(A,) - }./(28) and A, isnot of the form stated in (108) and (109).

Such a sequence A, has a convergent subsequence, converging to some limit lattice A’.

Then A’ is a critical lattice of K and has a point at (1, 0,1). We prove that A’ = A, or A,.
As A’ is a critical lattice of K with a point on the boundary of K, it follows by the result

of Mordell stated on p. 318 that A" = QA for some automorphism of K. This means that A’

.. b . ‘

= given by ¥ty = Au+0v+0%w), z=p(u+dv+d*w),

where A is complex, x is real and |A%| = 1. We know that there exist integers U, V, W

h that
sueh tha 1= NUF0V+02W), 1= pu(U+gV+g2W).

Since |A%z| =1, it follows that the number o = U+0V+62W is a unit in the field £(6).
As the numbers 1, 6, 62 form a basis of £(), the numbers of the form o~!(u+6v+6%w) are
the integers of £(¢) and there is an integral unimodular substitution from u, v, w to u’, v’, w’

h that
such tha u+ v+ 02w = w(u' + '+ 6?0'),

u+ v+ 6w = @(u’ + v’ + 0w,
u+ v+ ¢*w = o' (u' + v’ + p%w’),
where @ and o” are the conjugates of w in £(f) and £(¢). Omitting the accents we can now write
’ Xty =ut+0+0w, z=u+dv+Pw.
Thus either A’ = Ajor A’ = A,,.

Since a subsequence of the lattices A, converges to A, it is clear that some member of this
sequence is expressible in the form (108) where (109) is satisfied, contrary to the choice of this
sequence. This contradiction proves the lemma.

LemMA 10. Let § be a sufficiently small positive number. Let x, y, z be the linear forms given in
(108), where p,, p,, 0y, 0, satisfy (109). Then (1) if o, and o, are not both zero, there exist integers

u, v, w, not all zero, such that
> ’ | (x2+9%) z|<1—4;, |z]|<], (110)

where 8, is a positive absolute constant. Also (2) if p, and p, do not satisfy
¢p1+py =0, (111)
there exist integers u, v, w, not all zero, such that

| (®+95) z| <18, #+yP<l. - (112)
442
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338 H. DAVENPORT AND C. A. ROGERS ON DIOPHANTINE

Proof. We follow at first the same general lines as in the proof of lemma 7. For any unit
w of k() there exist integers u, v, w such that
w=ut+0+02w, ©=utbv+0w, o =utdv+Pw,

where o' is the conjugate of w in the real field £(¢). If we give u, v, w these values in (108),

we obtain Xk iy = 0+ py 0+ @+ ps 0y 2= 0 + 050405+ 050 (113)

The coefficients here are given, as in (82), by
| Apy = (2 —¢?) py— (0 —¢) ps)
Apy = (§2—0%) p,—($—0) Pz,} (114)
Aps = (?—0%) p,—(0—0) p,

and by similar formulae for 75, 0,, 75, where

11, 6, 62
A=|1, 8, 6 |=—i/(23).
19 ¢’ ¢2

The precise formulae are not important, so long as we observe that if ¢y = ¢, = 0 then
g, =0, =0, and if p; = 0 then (111) holds. The latter statement follows from the last
formula of (114), since §+8 = —¢@. We note also that ps, ..., 75 are all less than Cd in absolute
value, where C is an absolute constant. Plainly ¢; and ¢, are complex conjugates, since z in
(113) is real.

Case 1. Suppose that o, and o, are not both zero. We take w = 0-7, where r is an integer, positive
or zero. Then o' = ¢=7, and we have

ol |2 <
)
It follows from (113) that | (x4y)/w | <14-3CF, (115)
zjw' =1 +05+03(§)r+a4(%)r. | (116)
Write g: kéix, (117)

where £>1 and y is real. Since ¢, and ¢, are complex conjugates, we have

03(?)r+ 0'4(é)r = Zak’ cos (ry+a),

0 g
where ¢ = | 74| = | 0, | >0 (by the hypothesis of this case), and « is real. Hence, by (116),
1—C8+20k" cos (ry+a) <z/w' <14 C8+ 20k cos (ry+a). (118)

In the notation of Davenport (1939), we have
= 0 = g~ dp—iv).

Since | ¢/ | = ¢}, the angle x in (117) is given by
cosy = —id! = —0-76235..., siny<O.
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INEQUALITIES WITH AN. INFINITY OF SOLUTIONS 339
Hence x = 220°19-7"....
The angles ry, where r = 0, 1,2, 3, 4, are
0°, 220°20°, 80°39, 300°59’, 161°19’,

approximately. The greatest interval between two of these angles is less than 82°. It follows
that for any angle « there exists, in any set of five consecutive integers, one for which

| rx+2—180°|<41° (mod 360°),
that is, cos (ry+a) < —cos41° < —3. (119)

Choose 7 to be the largest integer satisfying (119) for which

20k <1. (120)
Then, owing to the result just stated, we have
20k7+5> 1. (121)
. .. . 1 1
, )
Since o< (4, this implies that k> Sk 90k (122)

In particular, if § is sufficiently small, the condition r> 0 is satisfied. Since, by (119),
—1<cos (ry+a)<—3,
it follows from (118) that z/w' >1—C0—20k" = — C9,
zjo' <14 C0—3(20k7) <14 C8— 3k75.
Hence | zJw" | <14 C8— k5. (123)
As k is an absolute constant, it follows from (115) and (123) that if § is sufficiently small
we have | (224 y?) 2| <1—38,,

where 0, is a positive absolute constant.

Also, from (123) and the fact that o’ = ¢=7, where ¢ >1 and r satisfies (122), it is clear that
| z| <1 if § is sufficiently small. »

Case 2. Suppose that p; and p, do not satisfy (111). As we have seen earlier, this implies that
p5=+0. We now take w = 6", where 7 is an integer, positive or zero. It follows from (113) that

x:l:l 9 r r
-(;—y = 1+p3+p4(9) +p5(§) ; (124)
|zJo" | <1+3C8. (125)
We write ps = peb,

where p> 0 by hypothesis, and f is real. By (124) and (117),
) o\ .
x—%’ﬂ ~1 +p3+,o4(9) -+ ph iex+,

xty (?) 2
Hence o Ps—Pa\p

= 14 (pk") 2+ 2pk" cos (rx+p). (126)
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340 H. DAVENPORT AND C. A. ROGERS ON DIOPHANTINE
We choose 7 to be the largest integer satisfying
cos (ry+p)<—2% (127)
for which 2pkr < 1. (128)
Then, as in the previous case, we have
2pk+5>1, (129)
: L 1 1
and since p < (9, this implies that & >W>§m’ (130)

so that >0 if § is sufficiently small. It follows from (126) and (127) that

x;};zy_ B (?)rz
W P3 /’40

<1+ (pk")*—2pk’
<1—pk,
since pk” <} by (128). The right-hand side is less than 1 —1£7%, by (129). Hence
| (x+1y) Jw | <205+ /(1 —3k75). (131)
It follows from (125) and (131) that if § is sufficiently small, we have
| (497 2| <10y,

where 8, is a positive absolute constant. Also, since w = 6", where || <1 and r satisfies

(130), we see that P yr<1

if § is sufficiently small. This completes the proof of lemma 10.

Lemma 11, Let & be a sufficiently small positive number. Let x, y, z be the linear forms given in
(108), where py, pyy 0y, 04 satisfy (109). Suppose now that not all of the numbers ¢p,+ py, 0,, 74 are
zero. Then there exist integers u, v, w, not all zero, such that

| (%) 2| <1—0, (132)
where 0, is a positive absolute constant.

Proof. This lemma is an immediate corollary of lemma 10.

TuroreM 13. There exists a positive absolute constant 0, with the following property. Let X, Y, Z
be real linear forms in u, v, w of determinant 1. Then, if Z is not equivalent to a multiple of

R=u+¢v+¢2w (133)
the inequalities |(X24 7)) Z| <o 23) (1-48,), |Z|<e (134)
are soluble for any ¢ 0. Also, if X?>+ Y2 is not equivalent to a multiple of
P24 Q2+ (AP+pQ)?, (135)
where A, u are arbitrarily real numbers and P, Q are the real linear forms defined by
P+iQ = u+0v+0%w, (136)
then the inequalities [ (X24+-Y2) Z| < 33) (1—4,), X?24-T2<e, (137)

are soluble for any e>0.
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Proof. This is on the same general lines as the proof of theorem 11. We content ourselves
with proving the second half of the theorem, as the proof of the first half is similar but slightly
simpler. ~ : '

Choose any positive number § so small that lemma 10 is satisfied. Let 8" be the corre-
sponding number given by lemma 9. Choose any positive d, so small that

J(23)
2(1-5,)

<1.J(23)+78". (138)

We prove the required result with this value of d,.
Let M denote the lower bound of the numbers A such that the inequalities

| (X242 Z| <), X>+Y2<p

are soluble for every #>0. Such numbers A exist, since by theorem 6 every A greater than
2/./(23) has the property. If M <2(1—4,)/./(23), there is nothing to prove, so we may suppose
that

M>— 2 (1-8,). (139)

As in the proof of theorem 11, for every positive integer n, we choose a number x,>0
such that the inequalities

| (X?+T?) Z|<M(1—7l-i), X2y riap
are insoluble, and values X*, Y*, Z* (depending on z) of X, Y, Z, such that
1 1 Y22
M(l—-;z)gl (X*21Y*2) Z* “<M(l+;z)’ X*2 4 Y*2<~nﬁ.

_XX*4YY* o XY*¥-YX* VA

Write T xRty y*z YT xpepywEro FT e

(140)
These are linear forms in «, v, w depending on #; their determinant A, taken absolutely,

satisfies
n 1 n 1
= <
7 A v/
The lattice A, which corresponds to them has a point at (1,0,1) and has no point other
than O in the region ‘ '
n—1 _
|2ty 2| <L, wgrsn
Since the lattices A, have bounded determinants, and have no point other than O in some
fixed neighbourhood of O, it follows from Mahler’s basic theorem that this sequence of
lattices contains a subsequence which converges to a certain lattice A. The limit lattice A has

determinant 1/M, has a point at (1,0, 1) and is admissible for K. By (138) and (139)

d(A) = 3,<3/(23) +5"
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Thus A satisfies the conditions of lemma 9, and so A can be expressed in the form (108)
where the inequalities (109) are satisfied. Hence, if we choose a lattice A, of the subsequence
converging to A with » sufficiently large, A, will be expressible in the form (108) where the
inequalities (109) are satisfied, and, further, there will be no point other than O of A, in
the region
glon. |(2+y2) z|<1—6,, **+y*<l.

Thus, after applying an integral unimodular substitution to u, v, w, the forms x, y, z

corresponding to this lattice A, satisfy the conditions of lemma 10. Hence, by the second

half of lemma 10,
xtay = u+(0+p;) v+ (07 +py) w,

where gp, +p, = 0, and so x4y = u+ (0+p;) v+ (0*—¢p,) w
— PiQ+py(0— ).

Now 21Q = (u+0v+02w) — (u+ v+ G?w)
= (0—0) (v—gw).
Consequently x=P4+pQ, y=oa0Q,

for some real «, f. It follows from (140) that X2+ Y2 is equivalent to some positive definite
quadratic form in P and @, and so X%+ Y2 is equivalent to a multiple of the form (135) for
suitable values of A and x. This proves the second half of theorem 13.

THEOREM 14. There exists a positive absolute constant 8, with the following property. Let X, Y, Z
be real linear forms in u, v, w of determinant 1. Then either (1) the inequality

| (X2 YZ)Z]<:/-£—3—) (1—3,) (141)

is soluble in integers u, v, w not all zero; or (2) the product (X*+ Y?) Z 1s equivalent to the product

2

P24 Q%+ (AP 2R 142
\/{23(1_4_,12_,_/‘2)}{ + Q2+ (AP+pQ)% (142)
or some real A, u, where P, Q, R are the real linear forms defined by
P+iQ = utOv+60%w, R=u+¢v+¢w, (143)
and in this case, for every >0, the inequality
| (X4 72) Z | < 2L EE) (144)
J@3(L+ 2 +42)}

is soluble in integers u, v, w not all zero.

Proof. The main clauses of the theorem may be proved by the method used to prove
theorem 13. We need only remark that 8, is defined as in theorem 13, that M is defined to
be the lower bound of the numbers v such that the inequality

| (X24+Y2) Z|<v

is soluble, and that lemma 11 is used in place of lemma 10.
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We consider now the case when (X24-Y?2)Z is equivalent to the form (142), and we
suppose that A and g are not both zero. We use the notation of lemma 10. We first prove that
there is no positive integer 7 such that §” is real. Suppose that 7>1 and 6" is real. Then

or v= ar,
and if >3 we can use the identities

PB=0+1, PF=0+1

to deduce that Gr=240r=3 = Gr-2-@r-3,
Proceeding inductively in this way we find that

af?+b04-c = af?+ b0+
for some non-negative integers a, b, ¢ with a and b not both zero. But as §+=0, this equation
implies that a$ = b,
which is impossible as ¢ is not rational. Thus

0 =|0]e,

where y is a real irrational multiple of 7.
Now for any integer r we can choose 1ntegers Uy, v, W such that

P+iQ =u-+0v+0%w =0, R=utgotgtw=4¢.

Then Pi+Q* =00, (AP+uQ)* = (%A(H’Jr?') — (0 —0"))?,
(AP'{‘/‘Q)Z A2+ﬂ ,/l-l—l/t ~2ir 2
so that PrQ? =—7 I/I——Z/t_“, x| .
Thus, for any ¢>0, we can choose 7 so that
(AP+pQ)*
prigr <¢

Then | (P2 Q2+ (\P-+4Q)?) R| <[ 0B | (14¢) = 1+,

and so there are integers #, v, w not all zero satisfying (144). This proves the last clause of
the theorem.

It will be seen from theorem 13 that the inequality

2

| (X279 Z| < s

1-4,)
has infinitely many solutions unless Z is equivalent to a multiple of R and X2+ Y2 is equi-
valent (but not necessarily by the same substitution) to a multiple of P24 Q2+ (AP uQ)2.
It is not difficult to show, by using the method in the proof of the last part of theorem 11, that
these exceptional cases are all essential (provided 1-+A2+4p2<<(1—4,)72).

It should, perhaps, be pointed out that the method by which we have proved theorems 13
and 14 offers no hope of giving an explicit value for the ‘absolute’ constant 8,. The difficulty
lies with lemma 9. It may be conjectured that theorem 13 would remain valid as long as

2 2
73 %> 5
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since — 31 is the next discriminant of a complex cubic field after —23. At present, no method
is known which offers hope of proving this; but possibly the fact that theorem 13 indicates
the existence of a second minimum for this problem may lead to further work on the question.

The conjecture just referred to has a bearing on the important unsolved problem of
simultaneous Diophantine approximation to two irrational numbers ®, ®. If ¢ denotes
the lower bound of the numbers ¢’ such that the inequalities

b o<l |1 o2
. e <3 |y () 5 (r>0)
have infinitely many integral solutions for any ®, @, it is known that
1 2
L o< 57~
J(23) T TV(23)

2
31y’

The above conjecture, if true, would allow one to replace the upper estimate 7 é 3) by 7

REFERENCES

Cassels, J. S. W. 1947 Quart. J. Math. 18, 236-243.

Cassels, J. S. W. 1949 Ann. Math., Princeton, etc., 50, 676-685.

Davenport, H. 1939 Proc. Lond. Math. Soc. (2), 45, 98-125.

Davenport, H. 1941 Proc. Camb. Phil. Soc. 37, 325-330.

Davenport, H. 1943 Proc. Camb. Phil. Soc. 39, 1-21.

Dickson, L. E. 1930 Studies in the theory of numbers. Chicago: University of Chicago Press.
Koksma, J. F. 1936 Diophantische Approximationen (Ergebnisse der Math. 1v,4). Berlin: Springer.
Mahler, K. 1946a Proc. Roy. Soc. A, 187, 151-187.

Mabhler, K. 19465 Proc. K. Acad. Sci. Amst. 49, 331-343, 444454, 524-532, 622-631.
Mordell, L. J. 1942 J. Lond. Math. Soc. 17, 107-115.

Segre, B. 1945 Duke Math. J. 12, 337-365.

Varnavides, P. 1948 J. Lond. Math. Soc. 23, 195-199.


http://rsta.royalsocietypublishing.org/

